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Variational principles for systems with unilateral constraints�
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Abstract

Derivations and formulations are given of the variational principles of analytical mechanics for systems with unilateral ideal
smooth constraints, originally established for systems with bilateral constraints. The virtual work principle, the Fourier inequality,
the d’Alembert–Lagrange principle, the Gauss principle of least constraint and its modification – the Chetayev principle of maximum
work, the Jourdain principle, the Hamilton–Ostrogradskii principle, the principle of least action in Lagrangian and Jacobian forms,
and the Suslov–Voronets principle are described.
© 2007 Elsevier Ltd. All rights reserved.

1. Some definitions1,2

Let Oxyz be an inertial system of coordinates relative to which a system of point masses M� with masses m� (� = 1,
. . ., N) is moving. If the points M� of the system at an arbitrary instant of time t are unable to occupy an arbitrary
position in space, or are unable to have arbitrary velocities, then such a system is said to be constrained. The conditions
imposed on the positions or motions of a constrained system are called constraints. If the constraints do not allow the
system to occupy arbitrary positions, they are called geometric or finite constraints. If the constraints only do not allow
the points of the system at a given instant of time to have arbitrary velocities, the constraints are called kinematic or
differential constraints. Finite constraints, and also differential integrable constraints, are called holonomic constraints,
while differential non-integrable constraints are called non-holonomic constraints. If the constraints do not depend on
time explicitly, they are called stationary or scleronomic constraints, and if they do, they are called non-stationary or
rheonomic constraints.

Constraints are said to be bilateral if analytically they are expressed by equations of the form

(1.1)

and unilateral if they are expressed by inequalities of the form

(1.2)

When the left-hand sides of these relations are positive, the constraints are said to be loosened, or that the system
has left its constraints; when, however, the left-hand sides are equal to zero, the constraints are active, or strained.
Constraints (1.1) and (1.2) will be assumed to be independent and smooth. We will confine ourselves below to linear
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differential constraints

where B�
� and D� are certain functions of time and the coordinates.

Here and below, summing over � is carried out from � = 1 to � = N, summing over � is carried out from � = 1 to
� = a and summing over � is carried out from � = 1 to � = b.

Elementary displacements �r�, satisfying the conditions

(1.3)

at a fixed value of time (�t = 0), are called virtual displacements of points of the system, and here the equality sign only
occurs for non-loosening displacements which leave the system constrained.

Note that here there is a considerable defference between the virtual displacements in the cases of bilateral and
unilateral constraints. In the former case, the virtual displacements are always reversible, whereas in the latter case
they are irreversible, with the exception only of virtual displacements which leave the system constrained; this explains
the double sign – equal to or greater than zero. Figuratively speaking, in the case of bilateral constraints, the system
lies somewhere within configuration space, and its virtual displacements can occur in any direction submitted by the
constraints, whereas in the case of unilateral constraints, the system lies on the boundary of the configuration space,
as a result of which, when the virtual displacements are directed inwards, displacements in the opposite direction are
impossible as they would lead beyond the configuration space.3

For the motion of a mechanical system under the action of prescribed forces F� applied, the constraints imposed on
the system act at different points M� of the system with certain forces R� called constraint forces.

1.1. Axiom of constraints

The action of constraints imposed on a mechanical system can be replaced by the action of constraint forces R�.

1.2. Corollary

If to the prescribed forces F� acting on points of the system, constraint forces R� are added, then the system can be
thought of as being free of the constraints causing the constraint forces R�.

The constraints imposed on the system depend on the physical nature of the mechanisms implementing the con-
straints, and therefore a constraint characteristic should be introduced into the mechanics in the form of an axiom that
fixes realistic relations observed in experiments: In many cases the concept of ideal constraints is adopted as such an
axiom. By definition, the total elementary work of ideal constraint forces R� on an arbitrary virtual displacement of
the system �r is equal to zero

in the case of bilateral constraints or equal to or greater than zero in the case of unilateral constraints

(1.4)

and here the equality sign occurs only for non-loosening displacements.
We will now find expressions for the constraint forces corresponding to ideal constraints. We will first consider the

non-loosening virtual displacements �r� for which, in relations (1.3), the equality signs apply. We will multiply each
of Eq. (1.3) by arbitrary multipliers −�� and −��, sum them and then add them to Eq. (1.4); as a result, we obtain the
equation
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from which we find expressions for the ideal constraint forces

(1.5)

where the number of constraint multipliers �� and �� is equal to the number a + b of constraint equations (1.1). In the
sums on the right-hand side of Eq. (1.5), each term represents the action of one respective constraint on a given point
M�

(1.6)

In the case of unilateral constraints, we will retain expressions (1.6) for the constraint forces, on account of which
the expression for the virtual work of the unilateral constraint forces coincides in form with the respective expression
for bilateral constraints, i.e.,

whence, by virtue of relation (1.4), there follow additional conditions for the multipliers

(1.7)

It should be pointed out that, in the case of loosening virtual displacements, the left-hand side of relation (1.4)
represents the elementary work of the constraint forces only in the nominal sense, namely if it is assumed that, during
the displacement, the constraint forces retain their initial values. In this sense, inequality (1.4) can be regarded as
indicating the relationship between the directions of the displacements and the constraint forces, rather than the work
of the constraint forces. The work of an ideal unilateral constraint force on virtual displacement is always equal to
zero: when the displacement leaves the system constrained, then

but when the displacement causes system constraint violation, i.e. when

the corresponding reactions vanish, and consequently �� = 0 and �� = 0 (� = 1, . . ., a; � = 1, . . ., b).1

In the literature, non-holonomic unilateral contraints are considered in two versions. In the first of these, the
conditions for the coordinates and velocities are written in the form of inequalities, as in the present paper. In the second
version, inequalities link the constraint forces, and the coordinates and velocities satisfy the constraint equations as
long as the constraint forces belong to some open set in constraint force space. As soon as the constraint force reach
the boundary of this set, the constraints disappear. This version is not considered in the present paper.

2. The virtual work principle, the fourier inequality

The equilibrium position of a system under the action of given forces is that position of the system in which it may
for an indefinite time be at rest relative to a given reference system. The equilibrium positions of systems are usually
considered when the prescribed forces F� and constraints do not depend on time explicitly.

Let us complete the prescribed forces F� with all constraint forces R�; then the mechanical system, according to the
axiom of constraints, can be thought of as a system of free points under the action of forces F� + R�. For free points,
the equilibrium equations have the form4
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We multiply these equations scalarly by the virtual displacements �r� of points of the system, sum them and, taking
into account inequality (1.4), obtain the relation

(2.1)

which holds for arbitrary virtual displacements �r� from the equilibrium position. Relation (2.1) is not only necessary
but also sufficient1,2 for equilibrium, i.e., it expresses the principle called the virtual work principle: for the equilibrium
of the system the sum of elementary work of active forces on any virtual displacement of the system is either zero or
negative; it is zero for non-loosening displacements and negative for loosening displacements.

This principle for the case of bilateral constraints was established by Bernoulli, and for the case of unilateral
constraints by Fourier.5

In the case of potential forces, when

where U(r1, . . ., rN) is the force function, inequality (2.1) takes the form

(2.2)

3. The d’Alembert–Lagrange principle

Let us consider the motion of a system subject to ideal constraints (1.1) and (1.2). Taking into account expressions
(1.5) for the forces of the strained constraints, we can represent the equations of motion in the form

(3.1)

Multiplying each of the equations in system (3.1) scalarly by �r�, and summing over all � = 1, . . ., N, we obtain

(3.2)

from which, taking into account inequality (1.4), we obtain an analytical expression for the d’Alembert–Lagrange
principle

(3.3)

The sum of the elementary work of active forces F� and inertia forces −m�r̈� on any virtual displacement is equal
to zero or is non-positive, depending on whether all constraints are bilateral or whether there are unilateral constraints
among them; the equality sign occurs in the case of non-loosening virtual displacements, and the less than sign in the
case of loosening displacements.

Principle (3.3) was derived as a consequence of the equations of motion (3.1). It is possible, conversely, to adopt
principle (3.3) as the primary one and, from it, then to obtain the equations of motion (3.1).

Relation (3.3) defines the relationship between the virtual displacements �r� that are allowed by constraints (1.1)
and (1.2) imposed, the active forces F� applied to the system and the accelerations r̈� caused by the prescribed forces
under the constraints imposed.

When all the accelerations r̈� = 0 (� = 1, . . ., N) and, consequently, the system is in equilibrium, the
d’Alembert–Lagrange principle (3.3) becomes the virtual work principle (2.1) (the Fourier inequality).

The quantity P� = F� − m�r̈� is sometimes called the lost force. In terms of this quantity, the d’Alembert–Lagrange
principle can be represented by an inequality similar to that of (2.1)

(3.4)
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In the case of active potential forces, the d’Alembert–Lagrange principle takes the form

(3.5)

where U = U(t, r1, . . ., rN).
Principle (3.3) was first obtained for bilateral constraints by Lagrange6 by combining the d’Alembert and Bernoulli

principles, and for unilateral constraints by Ostrogradskii.7

4. The Gauss principle of least constraint8

In the d’Alembert–Lagrange principle, the simultaneous (�t = 0) positions r� and r′
� of the system in the actual and

any infinitely close kinematically possible motions, differing by quantities �r� = r′
� − r�, satisfying conditions (1.3),

are compared. Here, principle (3.3) does not have the nature of the principle of stationarity (extremality) of any function.
Gauss managed to convert the d’Alembert–Lagrange principle into the principle of least constraint by narrowing

the set of motions compared: the actual motion is compared with kinematically possible motions in which, at a given
instant of time t, the radius vectors r� and velocities ṙ� of the points M� of the system have the same values as in the
actual motion. Gauss called these motions conceivable – for them, the accelerations of points ṙ� that are possible with
the prescribed configuration and velocity of the system are cosidered.

At the instant of time t + �, where � is a small quantity, we have

Neglecting terms of the third and higher orders in �, with Gaussian variation, at the instant of time t + dt we obtain

Substituting �r� into expression (3.3) of the d’Alembert–Lagrange principle, we will have

(4.1)

or, taking into account that the prescribed active forces F� = F�(t, r, ṙ) are independent of the accelerations r̈�, and
introducing into cosideration the function

(4.2)

we will rewrite relation (4.1) in the form

(4.3)

from which �2Z =
∑

�

m�(�r̈�)2 > 0.

Gauss called the quantity Z [Eq. (4.2)] a constraint and adopted it as a measure of the deviation of the actual motion
from the motion of a system free from all constraints. Consequently, for the actual motion, constraint Z has the least value
in the class of conceivable motions. This statement forms the Gauss principle of least constraint. For holonomic and
linear non-holonomic constraints, the Gauss principle has the same generality as the d’Alembert–Lagrange principle.2

5. Modification of Gauss principle: the Chetayev principle9

Chetayev proposed an interesting modification of Gauss principle. Along with the actual motion of the system, we
will examine the class of Gauss conceivable motions of the system (�) in the time interval from t to t + dt, determined
at the instant of time t by the values of r� and ṙ� = v�, and by constraints (1.1) and (1.2) imposed on the system.
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The work of the prescribed forces F� on an infinitesimal displacement

of conceivable motion is equal to

where �ṙ� is the variation of velocity of a point M� within a time interval dt for the conceivable motion. From this
expression we will subtract the expression for the work on the examined displacement of the forces m�r̈� that would
be sufficient to create the actual motion if the points M� were completely free:

As a result we obtain the expression

(5.1)

for the work on an elementary cycle consisting of forward conceivable motion in a field of prescribed forces and
backward (reverse) motion in a field of forces that would be sufficient to create the actual motion if the points of the
system were completely free.

The work on a similar cycle constructed for the actual motion is equal to

(5.2)

Subtracting Eq. (5.2) from Eq. (5.1), we obtain

(5.3)

We will denote by � the operation of calculating the increment due to transition from the actual motion to a close
conceivable motion. Since the forces F� are independent of the accelerations, it follows that �F� = 0, and Eq. (5.3) can
be represented in the form

(5.4)

According to the relation (4.1), we obtain

Applying to this inequality the operation �, we find

(5.5)

Consequently, the Chetayev principle of maximum work holds: the work A on an elementary cycle consisting of
forward motion in the field of prescribed forces and reverse motion in the field of forces that would be sufficient to
create the actual motion if the mechanical system were completely free has a maximum for the actual motion in the
class of Gauss conceivable motions.
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6. The Jourdain principle10

Unlike the d’Alembert–Lagrange, Gauss and Chetayev principles, the actual motion in the Jourdain principle is
compared with those kinematically possible motions for which at a given instant of time t the radius vectors r� of the
points of the system are the same as in the actual motion.

With Jourdain variation, at the instant in time t + dt we will have

(6.1)

Substituting this expression into expression (3.3) of the d’Alembert–Lagrange principle, we obtain the Jourdain
principle

(6.2)

7. The Hamilton–Ostrogradskii principle

Let us consider the motion of a holonomic mechanical system in the time interval from t0 to t1, and also, for each
instant t, the virtual displacements �r� from position r� occupied in the actual motion. We will that assume the virtual
displacements �r� are functions of t that belong to class C2 and vanish at instants of time t0 and t1 corresponding to
possible positions A0 and A1 of the system in the configuration space. The sequence of positions r� + �r� can be regarded
as a varied or tortuous path that for a non-holonomic system does not, however, satisfy the constraint equations.1

The variation of the kinetic energy of the system is given by

Integrating with respect to t, we will have

The first term on the right-hand side of this equation is equal to zero, since, according to the condition, �r� = 0 at
instants of time t0 and t1, which implies

The right-hand side of this equation is non-positive according to the d’Alembert–Lagrange principle (3.3), so that

(7.1)

The Hamilton–Ostrogradskii principle states that the integral with respect to time of the sum of the variation of the
kinetic energy and the work of the active forces on virtual displacements �r� for the actual motion is equal to zero or
is negative in comparison with motions along tortuous paths between the same positions A0 and A1 if the motion of
the system along all paths is accomplished in the same time interval t1 − t0, and here t0 and t1 are the initial and final
instants of time that are common to all paths.

In the case of active potential forces, when F� = gradr�U (� = 1, . . ., N), we obtain the Hamilton principle

(7.2)
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where L = T + V is Lagrangian function, i.e., for the actual motion

(7.3)

Principle (7.1) was originally stated by Hamilton11 for the case of stationary holonomic systems with bilateral
constraints under the action of potential forces, and was then extended by Ostrogradskii12 to the non-stationary case,
and also to the case of non-potential forces. For holonomic systems with unilateral constraints, principles (7.1) and
(7.3) were investigated by Stavrakova.13

8. The principle of least action in Lagrangian form

The first verbal formulation of the principle of least action was given by Maupertuis (1744) who then (1746) declared
this principle as the universal law of motion and rest.14: “General principle. When in nature a certain change occurs,
the amount of action necessary for this change is the least possible. The amount of action is the product of the mass of
the bodies by their velocity and the distance that they travel”.

The mathematical formulation of the principle of least action for the case of a point mass was given by Euler.15

Lagrange6 derived the principle for a system of point masses with bilateral constraints.
Below we will assume that the holonomic constraints imposed on the system are stationary, impacts possible in the

system as it comes against unilateral constraints or leave them being absolutely elastic (coefficient of restitution � = 1)
Ref. 1 and the applied active forces are potential with a force function U(r1, . . ., rN) that is independent of time. Under
these conditions the following energy integral exists

(8.1)

In fact, under these conditions, the actual displacements dr� = ṙ�dt (� = 1, . . ., N) are among the virtual displace-
ments. Multiplying Eq. (3.1) scalarly by dr�, and summing over all �, we obtain, with the above assumptions, the
equation

from which integral (8.1) follows. If the relations between the Cartesian and generalized coordinates are time-
independent, the Lagrangian function L(q, q̇) = T + V will also be independent of time, and integral (8.1) will exist
in this case also.

Left to itself, the mechanical system may choose its motions from motions with a given store of the total energy h,
and therefore the set of motions being compared may be limited by condition (8.1).2

The actual motion will vary so that the initial position A0 and the final position A1 of the system remain unchanged.
We will obtain the varied trajectory by producing at each instant of time t the virtual displacement �r�(�qi) relative to
the actual trajectory, where the instant of time t + �t corresponds to the position r� + �r�(qi + �qi) on a trajectory being
compared. Since the total energy H should be equal to h on all the trajectories considered, from this the velocity at the
position r� + �r� is found. Thus, unlike earlier, the time is varied, and the duration of the motions being compared will
differ from the duration of the actual motion between points A0 and A1. Below we will consider �r�(�qi) and �t to be
functions of time t of class C2.16

We will integrate expression (3.5) of the d’Alembert–Lagrange principle with respect to t in the range from t0 to t
– the instant the final position A1 is reached. We obtain

Since
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the previous relation takes the form

Varying the energy integral (8.1), we obtain �T = �U, and consequently the last relation can be represented in the
form

(8.2)

It expresses the principle of least action in Lagrangian form for ideal smooth unilateral constraints.
The actual motion, being compared with other close motions occurring with the same constant energy H, satisfies

condition (8.2); here, the variations of positions should be virtual displacements, and the initial and final positions of
the system remain unvaried.

9. The principle of least action in Jacobian form

Jacobi17 iminated the time t from the expression of action (8.2) using the energy integral and gave the principle of
least action a geometric form.

Consider the configuration space defined by the line element2

and let us represent the kinetic energy of the system in the form

(9.1)

where � is a parameter. Let the family of surfaces �(q1, . . ., qn) = c intersect the actual trajectory of the system, and
also infinitesimally close trajectories drawn through the points A0 and A1 of configuration space. Each of these curves
can be considered to be specified by its coordinates represented as functions of �. Let the virtual displacements of the
system from some point of the actual trajectory to a point of a being compared trajectory correspond to the same value
of �, and let the positions A0 and A1 correspond to the values of �0 and �1 respectively.

We will express �′ from Eq. (3.1) and replace T with U + h; we then obtain

(9.2)

and we represent relation (8.2) in the form

(9.3)

Thus, Lagrange variational principle with fixed lower and free upper bounds is transformed to Jacobi variational
principle with fixed bounds �0 and �1 and fixed ends A0 and A1.

The Euler–Lagrange equations for problem (9.3) have the form2

(9.4)
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(q′
i = dqi/dτ). These are the differential equations of the actual trajectory in the configuration space. The motion in

time is found by integrating Eq. (9.2), which gives t as a function of the parameter �.
If dt �= 0 on the trajectory considered, then, as the parameter �, it is possible to select the time t measured on the

actual trajectory, for which integral (8.1) occurs. Here, the Eq. (9.4) take the form of Lagrange’s equations of motion
of the second kind

which also proves the Jacobi principle.
Note2 that in mechanical problems it is not possible to fix the values of t0, t1, A0, A1 and h in advance.

10. The Suslov–Voronets principle for non-holonomic systems

Consider a mechanical system with the generalized coordinates q	 (	 = 1, . . ., r + b) which identically satisfy all
holonomic constraints. Suppose, furthermore, that the system is subjected to b non-holonomic constraints1

(10.1)

so that the virtual displacements satisfy the conditions

(10.2)

The operations of differentiation and variation are permutable only for 
 = 1, . . ., r, i.e.

and for the remaining b dependent velocities, from inequalities (10.1) and (10.2) we derive the relations

(10.3)

The symbol �B� denotes expressions that are linear and homogeneous in �q�. If Eq. (10.1) are integrable, then all
�B� ≡ 0.

We integrate the expression of the d’Alembert–Lagrange principle in generalized coordinates

from t0 to t1

(10.4)

assuming that, for t = t0 and t = t1, all independent variations �q
 (
 = 1, . . ., r) and consequently also dependent
variations �qr+b are equal to zero (� = 1, . . ., b).

We will have
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and also, taking relations (10.3) into account

Substituting these results into relation (10.4), we obtain the Suslov–Voronets principle1,18

(10.5)
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